TABLE OF CONTENTS

SECTION 6

WEIGHT AND BALANCE

Paragraph No. Page No.

6.1 General ... 6-1
6.3 Airplane Weighing Procedure 6-2
6.5 Weight and Balance Data Record 6-5
6.7 Weight and Balance Determination for Flight 6-9
6.9 Instructions for Using the Weight and Balance Plotter 6-15
SECTION 6
WEIGHT AND BALANCE

6.1 GENERAL

In order to achieve the performance and flying characteristics which are designed into the airplane, it must be flown with the weight and center of gravity (C.G.) position within the approved operating range (envelope). Although the airplane offers flexibility of loading, it cannot be flown with the maximum number of adult passengers, full fuel tanks and maximum baggage. With the flexibility comes responsibility. The pilot must ensure that the airplane is loaded within the loading envelope before he makes a takeoff.

Misloading carries consequences for any aircraft. An overloaded airplane will not take off, climb or cruise as well as a properly loaded one. The heavier the airplane is loaded, the less climb performance it will have.

Center of gravity is a determining factor in flight characteristics. If the C.G. is too far forward in any airplane, it may be difficult to rotate for takeoff or landing. If the C.G. is too far aft, the airplane may rotate prematurely on takeoff or tend to pitch up during climb. Longitudinal stability will be reduced. This can lead to inadvertent stalls and even spins; and spin recovery becomes more difficult as the center of gravity moves aft of the approved limit.

A properly loaded airplane, however, will perform as intended. This airplane is designed to provide performance within the flight envelope. Before the airplane is delivered, it is weighed, and a basic empty weight and C.G. location is computed (basic empty weight consists of the standard empty weight of the airplane plus the optional equipment). Using the basic empty weight and C.G. location, the pilot can determine the weight and C.G. position for the loaded airplane by computing the total weight and moment and then determining whether they are within the approved envelope.
6.1 GENERAL (Continued)

The basic empty weight and C.G. location are recorded in the Weight and Balance Data Form (Figure 6-5) and the Weight and Balance Record (Figure 6-7). The current values should always be used. Whenever new equipment is added or any modification work is done, the mechanic responsible for the work is required to compute a new basic empty weight and C.G. position and to write these in the Aircraft Log Book and the Weight and Balance Record. The owner should make sure that it is done.

A weight and balance calculation is necessary in determining how much fuel or baggage can be boarded so as to keep within allowable limits. Check calculations prior to adding fuel to ensure against overloading.

The following pages are forms used in weighing an airplane in production and in computing basic empty weight, C.G. position, and useful load. Note that the useful load includes usable fuel, baggage, cargo and passengers. Following this is the method for computing takeoff weight and C.G.

6.3 AIRPLANE WEIGHING PROCEDURE

At the time of licensing, provides each airplane with the basic empty weight and center of gravity location. This data is supplied by Figure 6-5.

The removal or addition of equipment or airplane modifications can affect the basic empty weight and center of gravity. The following is a weighing procedure to determine this basic empty weight and center of gravity location:

(a) Preparation

(1) Be certain that all items checked in the airplane equipment list are installed in the proper location in the airplane.

(2) Remove excessive dirt, grease, moisture, and foreign items such as rags and tools, from the airplane before weighing.

(3) Defuel airplane. Then open all fuel drains until all remaining fuel is drained. Operate each engine until all undrainable fuel is used and engine stops. Then add the unusable fuel (2.0 gallons total. 1.0 gallon each wing).
6.3 AIRPLANE WEIGHING PROCEDURE (Continued)

CAUTION
Whenever the fuel system is completely drained and fuel is replenished it will be necessary to run the engines for a minimum of 3 minutes at 1000 RPM on each tank to ensure no air exists in the fuel supply lines.

(4) Fill with oil to full capacity.

(5) Place pilot and copilot seats in fourth (4th) notch, aft of forward position. Put flaps in the fully retracted position and all control surfaces in the neutral position. Tow bar should be in the proper location and entrance and baggage door closed.

(6) Weigh the airplane inside a closed building to prevent errors in scale readings due to wind.

(b) Leveling

(1) With airplane on scales, block main gear oleo pistons in the fully extended position.

(2) Level airplane (refer to Figure 6-3) deflating nose wheel tire, to center bubble on level.

(c) Weighing- Airplane Basic Empty Weight

(1) With the airplane level and brakes released, record the weight shown on each scale. Deduct the tare, if any, from each reading.
WEIGHING FORM

Figure 6-1

LEVELING DIAGRAM

Figure 6-3

The datum is 78.4 inches ahead of the wing leading edge at Wing Station 106.
6.3 AIRPLANE WEIGHING PROCEDURE (Continued)

(d) Basic Empty Weight Center of Gravity

1. The Leveling Diagram geometry (Figure 6-3) applies to the PA-44-180 airplane when it is level. Refer to Leveling paragraph 6.3 (b).

2. The basic empty weight center of gravity (as weighed including optional equipment, full oil and unusable fuel) can be determined by the following formula:

\[
\text{C.G. Arm} = \frac{N (A) + (R + L) (B)}{T} \text{ inches}
\]

Where: \(T = N + R + L \)

6.5 WEIGHT AND BALANCE DATA AND RECORD

The Basic Empty Weight, Center of Gravity Location and Useful Load listed in Figure 6-5 are for the airplane as delivered from the factory. These figures apply only to the specific airplane serial number and registration number shown.

The basic empty weight of the airplane as delivered from the factory has been entered in the Weight and Balance Record (Figure 6-7). This form is provided to present the current status of the airplane basic empty weight and a complete history of previous modifications. Any change to the permanently installed equipment or modification which affects weight or moment must be entered in the Weight and Balance Record.
MODEL PA-44-180, SEMINOLE

Airplane Serial Number 4496211
Registration Number N380U
Date 07/25/05

AIRPLANE BASIC EMPTY WEIGHT

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (Lbs)</th>
<th>C.G. Amt (Inches Aft of Datum)</th>
<th>Moment (In-Lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Standard Empty Weight*</td>
<td>2596.9</td>
<td>85.8163</td>
<td>222856.4</td>
</tr>
<tr>
<td>Optional Equipment</td>
<td>55.4</td>
<td>115.2563</td>
<td>6385.2</td>
</tr>
<tr>
<td>Basic Empty Weight</td>
<td>2652.3</td>
<td>86.4312</td>
<td>229241.6</td>
</tr>
</tbody>
</table>

*The standard empty weight includes full oil capacity and 2.0 gallons of unusable fuel.

AIRPLANE USEFUL LOAD - NORMAL CATEGORY OPERATION

\[
\text{(Gross Weight)} - \text{(Basic Empty Weight)} = \text{Useful Load}
\]

\[
3800 \text{ lbs.} - (2652.3 \text{ lbs.}) = 1147.7 \text{ lbs.}
\]

THIS BASIC EMPTY WEIGHT, C.G. AND USEFUL LOAD ARE FOR THE AIRPLANE AS LICENSED AT THE FACTORY. REFER TO APPROPRIATE AIRCRAFT RECORD WHEN ALTERATIONS HAVE BEEN MADE.

WEIGHT AND BALANCE DATA FORM
Figure 6-5

REPORT: VB-1616
6-6

ISSUED: JULY 12, 1995
<table>
<thead>
<tr>
<th>Date</th>
<th>Item No.</th>
<th>Description of Article or Modification</th>
<th>Added (+)</th>
<th>Removed (-)</th>
<th>Weight Change</th>
<th>Running Basic Empty Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/25/05</td>
<td></td>
<td>As Delivered</td>
<td></td>
<td></td>
<td></td>
<td>2652.3</td>
</tr>
<tr>
<td>Date</td>
<td>Item No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of Article or Modification</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Added (+) Removed (-)</th>
<th>Weight (Lb.)</th>
<th>Arm (In.)</th>
<th>Moment (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Registration Number</th>
<th>Running Basic Empty Weight</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEIGHT AND BALANCE RECORD (Continued)

REPORT: VB-1616

ISSUED: JULY 12, 1995
6.7 WEIGHT AND BALANCE DETERMINATION FOR FLIGHT

(a) Add the weight of all items to be loaded to the basic empty weight.
(b) Use the Loading Graph (Figure 6-13) to determine the moment of all items to be carried in the airplane.
(c) Add the moment of all items to be loaded to the basic empty weight moment.
(d) Divide the total moment by the total weight to determine the C.G. location.
(e) By using the figures of item (a) and item (d) (above), locate a point on the C.G. range and weight graph (Figure 6-15). If the point falls within the C.G. envelope, the loading meets the weight and balance requirements.
SECTION 6
WEIGHT AND BALANCE

PA-44-180, SEMINOLE

6.7 WEIGHT AND BALANCE DETERMINATION FOR FLIGHT
(Continued)

<table>
<thead>
<tr>
<th></th>
<th>Weight (Lbs)</th>
<th>Arm Aft Datum (Inches)</th>
<th>Moment (In-Lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Empty Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot and Front Passenger</td>
<td>340.0</td>
<td>80.5</td>
<td>27370</td>
</tr>
<tr>
<td>Passengers (Rear Seats)</td>
<td>340.0</td>
<td>118.1</td>
<td>40154</td>
</tr>
<tr>
<td>Fuel (108 Gallon Maximum Usable)</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baggage (200 Lb. Limit)</td>
<td>142.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp Weight (3816 Lbs. Max.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Allowance for Engine Start, Taxi & Runup</td>
<td>-16.0</td>
<td>95.0</td>
<td>-1520</td>
</tr>
<tr>
<td>Take-off Weight (3800 Lbs. Max.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The center of gravity (C.G.) for the take-off weight of this sample loading problem is at inches aft of the datum line. Locate this point () on the C.G. range and weight graph. Since this point falls within the weight - C.G. envelope, this loading meets the weight and balance requirements.

<table>
<thead>
<tr>
<th>Take-off Weight</th>
<th>Minus Estimated Fuel Burn-off (climb & cruise) @ 6.0 Lbs/Gal.</th>
<th>95.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locate the center of gravity of the landing weight on the C.G. range and weight graph. Since this point falls within the weight-C.G. envelope, the loading may be assumed acceptable for landing.

IT IS THE RESPONSIBILITY OF THE PILOT AND AIRCRAFT OWNER TO ENSURE THAT THE AIRPLANE IS LOADED PROPERLY AT ALL TIMES.

SAMPLE LOADING PROBLEM
Figure 6-9

REPORT: VB-1616
6-10

ISSUED: JULY 12, 1995
6.7 WEIGHT AND BALANCE DETERMINATION FOR FLIGHT
(Continued)

<table>
<thead>
<tr>
<th>Weight (Lbs)</th>
<th>Arm Aft Datum (Inches)</th>
<th>Moment (In-Lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Empty Weight</td>
<td>80.5</td>
<td></td>
</tr>
<tr>
<td>Pilot and Front Passenger</td>
<td>118.1</td>
<td></td>
</tr>
<tr>
<td>Passengers (Rear Seats)</td>
<td>142.8</td>
<td></td>
</tr>
<tr>
<td>Fuel (108 Gallon Maximum Usable)</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td>Baggage (200 Lb. Limit)</td>
<td>1520</td>
<td></td>
</tr>
</tbody>
</table>

The center of gravity (C.G.) for the take-off weight of this loading problem is at inches aft of the datum line. Locate this point () on the C.G. range and weight graph. If this point falls within the weight-C.G. envelope, this loading meets the weight and balance requirements.

Take-off Weight

[Minus Estimated Fuel Burn-off (climb & cruise) @ 6.0 Lbs/Gal.]

Landing Weight

Locate the center of gravity of the landing weight on the C.G. range and weight graph. If this point falls within the weight-C.G. envelope, the loading may be assumed acceptable for landing.

IT IS THE RESPONSIBILITY OF THE PILOT AND AIRCRAFT OWNER TO ENSURE THAT THE AIRPLANE IS LOADED PROPERLY AT ALL TIMES.

WEIGHT AND BALANCE LOADING FORM
Figure 6-11

ISSUED: JULY 12, 1995
REPORT: VB-1616
6-11
LOADING GRAPH
Figure 6-13

ISSUED: JULY 12, 1995
REPORT: VB-1616
6-13
C.G. RANGE AND WEIGHT
Figure 6-15

REPORT: VB-1616
6-14

ISSUED: JULY 12, 1995
6.9 INSTRUCTIONS FOR USING THE WEIGHT AND BALANCE PLOTTER

This plotter is provided to enable the pilot quickly and conveniently to:

(a) Determine the total weight and C.G. position.
(b) Decide how to change his load if his first loading is not within the allowable envelope.

Heat can warp or ruin the plotter if it is left in the sunlight. Replacement plotters may be purchased from Piper dealers and distributors.

When the airplane is delivered, the basic weight and basic C.G. will be recorded on the computer. These should be changed any time the basic weight or C.G. location is changed.

The plotter enables the user to add weights and corresponding moments graphically. The effect of adding or disposing of useful load can easily be seen. The plotter does not cover the situation where cargo is loaded in locations other than on the seats or in the baggage compartments.

Brief instructions are given on the plotter itself. To use it, first plot a point on the grid to locate the basic weight and C.G. location. This can be put on more or less permanently because it will not change until the airplane is modified. Next, position the zero weight end of any one of the loading slots over this point. Using a pencil, draw a line along the slot to the weight which will be carried in that location. Then position the zero weight end of the next slot over the end of this line and draw another line representing the weight which will be located in this second position. When all the loads have been drawn in this manner, the final end of the segmented line locates the total load and the C.G. position of the airplane for takeoff. If this point is not within the allowable envelope it will be necessary to remove fuel, baggage, or passengers and/or to rearrange baggage and passengers to get the final point to fall within the envelope.

Fuel burn-off and gear movement do not significantly affect the center of gravity.

ISSUED: JULY 12, 1995

REPORT: VB-1616
6-15
SAMPLE PROBLEM

A sample problem (Figure 6-17) will demonstrate the use of the weight and balance plotter.

Assume a basic weight and C.G. location of 2364 pounds at 86.14 inches respectively. We wish to carry a pilot and 3 passengers. Two men weighing 180 and 200 pounds will occupy the front seats, and two children weighing 80 and 100 pounds will ride in the rear. Two suitcases weighing 25 pounds and 20 pounds respectively, will be carried in the rear compartment. We wish to carry 60 gallons of fuel. Will we be within the safe envelope?

(a) Place a dot on the plotter grid at 2364 pounds and 86.14 inches to represent the basic airplane. (See illustration.)

(b) Slide the slotted plastic into position so that the dot is under the slot for the forward seats, at zero weight.

(c) Draw a line up the slot to the 380 pound position (180 + 200) and put a dot.

(d) Continue moving the plastic and plotting points to account for weight in the rear seats (80 + 100), baggage compartment (45), and fuel tanks (360).

(e) As can be seen from the illustration, the final dot shows the total weight to be 3329 pounds with the C.G. at 89.30. This is well within the envelope.

(f) There will be room for more fuel.

As fuel is burned off, the weight and C.G. will follow down the fuel line and stay within the envelope for landing.
SAMPLE PROBLEM
Figure 6-17

ISSUED: JULY 12, 1995
REPORT: VB-1616
6-17